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ABSTRACT

High-throughput screening (HTS) research programs
for drug development or chemical hazard assess-
ment are designed to screen thousands of molecules
across hundreds of biological targets or pathways.
Most HTS platforms use fluorescence and lumines-
cence technologies, representing more than 70% of
the assays in the US Tox21 research consortium.
These technologies are subject to interferent sig-
nals largely explained by chemicals interacting with
light spectrum. This phenomenon results in up to
5–10% of false positive results, depending on the
chemical library used. Here, we present the Inter-
Pred webserver (version 1.0), a platform to predict
such interference chemicals based on the first large-
scale chemical screening effort to directly charac-
terize chemical-assay interference, using assays in
the Tox21 portfolio specifically designed to measure
autofluorescence and luciferase inhibition. InterPred
combines 17 quantitative structure activity relation-
ship (QSAR) models built using optimized machine
learning techniques and allows users to predict the
probability that a new chemical will interfere with
different combinations of cellular and technology
conditions. InterPred models have been applied to
the entire Distributed Structure-Searchable Toxicity
(DSSTox) Database (∼800,000 chemicals). The Inter-
Pred webserver is available at https://sandbox.ntp.
niehs.nih.gov/interferences/.

INTRODUCTION

Chemical hazard assessment screening and drug discovery
programs use an array of cell-based assays measuring pro-
cesses such as cell growth/death, receptor binding, or pro-
tein expression, while others rely upon cell-free assays that
characterize biochemical activity. Both formats use mostly
fluorescence-based detection technologies as showed in ap-

plications reported in PubChem (1,2). This type of tech-
nology allows for optimization of speed, accuracy, repro-
ducibility and assay sensitivity (3). Specifically, lumines-
cence technology is frequently used as a readout from
luciferase-based reporter gene assays and provides high sen-
sitivity due to lack of background activity in mammalian
cell lines.

These types of technology are prone to interference by
chemicals that may modulate the signal intensity without
displaying any true biological activity. Chemicals may inter-
fere with fluorescent assays via quenching, direct absorption
of light, or autofluorescence, where they emit light that over-
laps with the fluorophore spectrum (4). Luciferase assays
are subject to interference via direct inhibition of enzymatic
activity or oxidation of the luciferin substrate (5). This is
a fairly common phenomenon, where autofluorescence has
been observed for >5% of PubChem chemical libraries (6),
and unexplained luminescence changes occurred in 12% of
active chemicals from the NIH Molecular Libraries Small
Molecule Repository (7).

The first large-scale screening effort to directly charac-
terize chemical-assay interference, rather than as an ob-
served byproduct of measuring biological activity, used
multiple assays in the Tox21 portfolio (8,9) specifically de-
signed to measure autofluorescence and luciferase inhibi-
tion. Over 8000 unique structures covering environmen-
tal toxicants of regulatory concern, food additives, phar-
maceuticals, and industrial chemicals, many with signifi-
cant human exposure potential, were run using ultra high-
throughput screening (HTS) technologies measuring inter-
ference with luciferase- and fluorescence-based readouts
under various culture conditions and cell types. Advanced
cheminformatics approaches were used to relate chemi-
cal structural clusters to interference activity profiles, and
multiple machine learning algorithms were applied to pre-
dict assay interference based on molecular descriptors and
physicochemical properties (10).

Here, we present InterPred, a webserver hosted by the
National Toxicology Program (https://sandbox.ntp.niehs.
nih.gov/interferences/) including the best performing inter-
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ference predictive models (accuracies of ∼80%). The Inter-
Pred tool allows users to predict the likelihood of assay in-
terference for any new chemical structure, increasing con-
fidence in HTS data by decreasing false positive testing re-
sults.

MATERIALS AND METHODS

Tox21 interference library

Three assay platforms from the Tox21 portfolio were used
to develop interference QSAR models (10). The raw data
are freely available on the NCATS Tox21 browser (https:
//tripod.nih.gov/tox21/assays/) under the names ‘tox21-luc-
biochem-p1’ for the luciferase inhibition assay, and ‘tox21-
spec-hepg2-p1’ and ‘tox21-spec-hek293-p1’ for autofluo-
rescence assays using HepG2 and HEK-293 cell cultures,
respectively, measuring red, green and blue wavelengths
using cell-based and cell-free culture-medium-only condi-
tions. The Tox21 chemical library (8,305 unique substances)
was screened in triplicate concentration response in all as-
says, with concurrent cytotoxicity measurements where ap-
plicable.

Molecular modeling

Chemicals are encoded using a unique SMILES string for-
mat. Using the MolVS python library available at http://
molvs.readthedocs.io/en/latest/guide/intro.html each chem-
ical is prepared from original SMILES including the follow-
ing steps: hydrogen removing, sanitization, metal discon-
nection, stereochemistry process, desolvation and filtering
of salt fragments. Mixtures were not considered and were
excluded in an early step. From each curated structure, a set
of 677 1D–2D descriptors is computed using RDKit tool
kit version 2019-09-03 (https://www.rdkit.org/) and an ad-
ditional set of 30 physicochemical descriptors is computed
using the OPERA models version 2.3 (11).

InterPred QSAR models

Data chemical curation descriptor selection and QSAR
modelling workflows were conducted according to best
practices (12–15). Classification models to predict active
versus inactive chemicals for each of the interference as-
say endpoints were built using four machine learning ap-
proaches, see (10) for details. Considering the unbalanced
dataset, i.e. far more inactive chemicals as shown in Sup-
porting Information Table S1, under-sampling methods
were applied via random selection of inactive chemicals to
yield a ratio of 70% inactive and 30% active chemicals. All
model building steps were repeated 10 times to ensure that
all chemicals were incorporated in the process. Only the best
performing QSAR models, developed using random forest
machine learning (16), were selected for inclusion in the In-
terPred webserver. For every model, loss of performance
can be explained by low sensitivity, i.e. the difficulty in pre-
dicting active chemicals. This phenomenon is explained by
the structural diversity of the large inactive set, and the cov-
erage of the active set by the inactive set. Models were val-
idated using 10-fold cross validation and an external test
set. Performances in cross validation and on an indepen-
dent test set are presented in Supporting information Tables

S2 and S3. The InterPred webserver allows users to pre-
dict chemical interference using 17 QSAR models includ-
ing: luminescence/luciferase, overall autofluorescence, aut-
ofluorescence on the blue, green and red wave lengths indi-
vidually, and all combinations of autofluorescence interfer-
ence for assays using HepG2 or HEK-293 cell lines in cell
free or cell-based conditions, with three wave lengths each
(blue, green and red). Each model output is an interference
probability (from 0 to 1) for each chemical/assay combina-
tion with a standard deviation correlated to the model con-
fidence, see methods in (10). Scripts developed to build In-
terPred QSAR models are freely available on a GitHub di-
rectory (https://github.com/ABorrel/interferences), and the
modeling dataset is included in an archive in Supporting In-
formation (File S1).

Distributed structure-searchable toxicity (DSSTox)
database prediction

All 17 models were run to produce interference pre-
dictions for all structures included in the Distributed
Structure-Searchable Toxicity (DSSTox) Database
(https://www.epa.gov/chemical-research/distributed-
structure-searchable-toxicity-dsstox-database) containing
∼800 000 chemicals (17,18). The coverage of the applica-
bility domain of the Tox21 chemical library on the DSSTox
DB is discussed in (10) and the broad coverage of the
structural landscape of Tox21 chemicals on the principal
component analysis defined from the DSSTOX chemical
library using 1D and 2D molecular descriptors is presented
in Supporting information Figure S1.

Webserver development

The webserver was developed using Django in Python 3.6.8
on a CentOS 7 virtual machine. Interference prediction
models were developed in R 3.4.4. Interactive result ta-
bles were developed using the agGrid (https://www.ag-grid.
com/) JavaScript library. InterPred webserver includes a
PostgreSQL database used to store molecular descriptors,
interference prediction probabilities and prepared struc-
tures. More than 800 000 chemical entries are included in
the database.

RESULTS

Workflow

The InterPred protocol is presented as a workflow in Figure
1.

Input. Users can upload up to 100 chemicals on the server
in a SMILES string format or using CASRN or DSSTox
identifier. Chemicals can be pasted in the text bar or up-
loaded in a text format with one chemical per line. In
the first step, InterPred verifies each entry and transforms
CASRN and DSSTox identifiers into a SMILES string for-
mat.

Chemical preparation. Following the best practices, see
methods, each chemical structure is prepared and cleaned.
At the end of this step users can decide to resubmit

https://tripod.nih.gov/tox21/assays/
http://molvs.readthedocs.io/en/latest/guide/intro.html
https://www.rdkit.org/
https://github.com/ABorrel/interferences
https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
https://www.ag-grid.com/


W588 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

Figure 1. Workflow presenting the different steps of the InterPred chemical-assay interference prediction protocol. The top portion represents user options,
input and output, in the middle the different server steps, and in the bottom the database interactions.

Table 1. Percentage of interference chemicals predicted from the DSSTox database, by technology (luciferase inhibition, autofluorescence) and by cell
culture condition. Percentage of predicted active chemicals is reported for different probability cutoffs

% Interferent chemicals

QSAR model Cell culture Conditions/endpoint
Cutoff >

0.5
Cutoff >

0.6
Cutoff >

0.7
Cutoff >

0.8
Cutoff >

0.9

Luciferase Luciferase 18.21 8.83 3.09 0.64 0.04
Auto-fluorescence HepG2 HEK-293 All 10.96 5.71 2.13 0.25 0.02

Blue 8.47 3.07 0.65 0.04 0
Green 5.78 2.16 0.5 0.09 0.01
Red 2.95 0.97 0.34 0.06 0.01

HepG2 Cell based blue 11.57 6.09 2.69 0.52 0.01
Cell based green 5.81 2.48 0.78 0.17 0.02
Cell based red 4.67 1.55 0.4 0.1 0.01
Cell free blue 12.21 5.64 2 0.21 0

Cell free green 4.36 1.54 0.52 0.14 0.02
Cell free red 3.64 1.28 0.45 0.1 0.01

HEK-293 Cell based blue 11.96 5.21 1.78 0.2 0
Cell based green 4.4 1.32 0.36 0.07 0.01
Cell based red 3.54 1.21 0.34 0.07 0.01
Cell free blue 10.18 4.22 1.1 0.05 0

Cell free green 3.01 0.69 0.15 0.04 0.01
Cell free red 3.88 1.54 0.58 0.2 0.03

their chemicals or continue the protocol. Chemicals in the
DSSTox database are already prepared and included in the
database. To simplify the database requests, cleaned chem-
icals in SMILES format are converted into InChIKey for-
mat.

Molecular descriptors. Molecular descriptors are com-
puted on the fly using custom Python scripts. The database
was populated with the full descriptor set for ∼800k chem-
icals in the DSSTox database. At this step, for their list of
chemicals, users can download the 1D/2D RDKit molecu-

lar descriptor matrix as well as physicochemical descriptor
matrix computed using OPERA models.

Interference prediction. Users can choose up to 17 interfer-
ence QSAR models to apply on the input chemical list. For
each chemical, each model returns a probability (from 0 to
1, with an associated standard deviation) that that chemical
will interfere with the particular assay technology (i.e. lu-
ciferase inhibition or autofluorescence under various wave-
lengths and cell culture conditions). The results page in-
cludes a dynamic table where users can sort chemicals using
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Figure 2. Venn diagrams of predicted interferent chemicals from the ∼800 000 compound DSSTox library, with a probability cutoff of 0.5, (A) comparing
different color channels, (B) considering only the blue channel and comparing cell lines/culture conditions, (C) considering only the green channel and
comparing cell lines/culture conditions and (D) considering only the red channel and comparing cell lines/culture conditions. For specific color channels
cell culture conditions are represented as cell based (hepg2 cell and hek293 cell) and cell free, culture medium only (hepg2 free and hek293 free).

the interference probability on a specific selected model. In
addition, all predictions are downloadable in a .csv format.

Computational time and database storage. Computational
processing time is dependent on molecular size and com-
plexity. For example, a small molecule with less than ten
atoms can be processed in few seconds while a chemical with
>40 atoms will take more than ten seconds. To reduce wait-
ing time, we limited the number of chemicals that can be
uploaded by the user to one hundred. The entire DSSTox
database was precomputed, covering >800 000 chemical
structures. In addition, by default we store any new chem-
ical uploaded on the webserver in the database. This ap-
proach speeds up the interference prediction by limiting du-
plicated server runs. However, being aware that users’ data
can be sensitive or confidential, we allow users to opt out of
saving chemicals in the database.

DSSTox interference predictions

The interference prediction workflow contained in
InterPred was applied to the DSSTox database

(https://www.epa.gov/chemical-research/distributed-
structure-searchable-toxicity-dsstox-database) including
>800 000 chemicals. After the first chemical prepara-
tion step, 573 841 structures in QSAR ready form were
used to compute descriptors and predict assay technol-
ogy interference with the 17 QSAR models. For each
chemical, each QSAR model produced a probability
that the chemical would interfere with that specific assay
technology/condition. Table 1 summarizes the number of
interferent chemicals found for each model with different
probability cutoffs. The number of interferent chemicals
was correlated with the probability cutoff, which users can
specify. Only a few chemicals were identified as interferent
with a probability >0.9. Globally, the same tendency was
found as in the training set, see (10), with the largest number
of interferent chemicals predicted for luciferase inhibition
and autofluorescence in the blue channel. The coverage
of the number of predicted interferent chemicals across
different cell types, conditions and colors, is presented in
Figure 2. As expected, significant portions of the chemicals
were predicted interferent in several conditions by color. As
discussed in (10), different types of interferent chemicals

https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
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can be identified by an analysis combining QSAR model
results. For example, a chemical that interferes on all of
the same color conditions is most likely to interfere with
the light spectrum. Analogously, a chemical predicted
to be active across models in the same cell type is more
likely to interfere with the cell, e.g. by interfering with
cell metabolism. From the DSSTox predictions, the top 8
chemicals predicted active across all models are presented
in Supporting Information Figure S2. As expected, these
chemicals contained a complex aromatic ring arrangement
composed of more than 3 rings which correspond to light
absorption property, and included dye chemicals such as
Erythrosin (15905-32-5) or reference chemicals such as
Fluorescein (2321-07-5) or Rose Bengal (152-75-0).

DISCUSSION

Here, we have presented an intuitive, easy to use webserver
combining 17 models predicting the likelihood of chemi-
cal interference with the most commonly used assay tech-
nologies in large screening efforts. The InterPred website
is free and open to all users and there is no login require-
ment. The database has been populated with interference
predictions on over 800 000 chemicals. This work builds on
previous efforts to predict chemical-assay interference us-
ing rule-based classification models (19) and substructure
filters (20) by applying machine learning to a large dataset of
chemicals screened specifically for assay interference across
technology types and cell culture conditions. By provid-
ing a range of QSAR models and a probabilistic predic-
tion approach, we allow users to assemble predictions on
different technologies and conditions to build a better un-
derstanding of the potential interferent properties of a new
chemical. Notably, this webserver can also be used to com-
pute 1D/2D chemical descriptors as well as predict physico-
chemical properties from OPERA models. We feel that this
work is an extremely valuable contribution to the scientific
community by providing novel insight into structural pat-
terns driving false signals in the most common HTS assays,
and therefore has the potential to save significant time and
resources in both the study design and data analysis phases.

DATA AVAILABILITY

The raw data used to build QSAR models are freely avail-
able on the NCATS Tox21 browser at https://tripod.nih.
gov/tox21/assays/ under the names ‘tox21-luc-biochem-p1’
for the luciferase inhibition assay, and ‘tox21-spec-hepg2-
p1’ and ‘tox21-spec-hek293-p1’. DSSTox chemicals are
freely available on the EPA chemical dashboard at https://
comptox.epa.gov/dashboard. The InterPred website (https:
//sandbox.ntp.niehs.nih.gov/interferences/) is free and open
to all users and there is no login requirement.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

Funding for open access charge: National Institute of En-
vironmental Health Science.
Conflict of interest statement. None declared.

REFERENCES
1. Inglese,J., Johnson,R.L., Simeonov,A., Xia,M., Zheng,W.,

Austin,C.P. and Auld,D.S. (2007) High-throughput screening assays
for the identification of chemical probes. Nat. Chem. Biol., 3,
466–479.

2. Thorne,N., Inglese,J. and Auld,D.S. (2010) Illuminating insights into
firefly luciferase and other bioluminescent reporters used in chemical
biology. Chem. Biol., 17, 646–657.

3. Fan,F. and Wood,K.V. (2007) Bioluminescent assays for
high-throughput screening. Assay Drug Dev. Technol., 5, 127–136.

4. Sittampalam,G., Coussens,N., Arkin,M., Auld,D., Austin,C.,
Bejcek,B., Glicksman,M., Inglese,J., Iversen,P., Mcgee,J. et al. (2018)
Assay Guidance Manual Bethesda (MD): Eli Lilly & Company and
the National Center for Advancing Translational Sciences; 2004-,
Bethesda.

5. Auld,D.S. and Inglese,J. (2004) Interferences with Luciferase Reporter
Enzymes. In: Sittampalam,GS, Grossman,A, Brimacombe,K,
Arkin,M, Auld,D, Austin,CP, Baell,J, Bejcek,B, Caaveiro,JMM and
Chung,TDY et al.Assay Guidance Manual [Internet]. Bethesda.

6. Simeonov,A., Jadhav,A., Thomas,C.J., Wang,Y., Huang,R.,
Southall,N.T., Shinn,P., Smith,J., Austin,C.P., Auld,D.S. et al. (2008)
Fluorescence spectroscopic profiling of compound libraries. J. Med.
Chem., 51, 2363–2371.

7. Thorne,N., Shen,M., Lea,W.A., Simeonov,A., Lovell,S., Auld,D.S.
and Inglese,J. (2012) Firefly luciferase in chemical biology: a
compendium of inhibitors, mechanistic evaluation of chemotypes,
and suggested use as a reporter. Chem. Biol., 19, 1060–1072.

8. Collins,F.S., Gray,G.M. and Bucher,J.R. (2008) Toxicology.
Transforming environmental health protection. Science, 319,
906–907.

9. Thomas,R.S., Paules,R.S., Simeonov,A., Fitzpatrick,S.C.,
Crofton,K.M., Casey,W.M. and Mendrick,D.L. (2018) The us federal
Tox21 program: a strategic and operational plan for continued
leadership. ALTEX, 35, 163–168.

10. Borrel,A., Huang,R., Sakamuru,S., Xia,M., Simeonov,A.,
Mansouri,K., Houck,K.A., Judson,R.S. and Kleinstreuer,N.C.
(2020) High-throughput screening to predict chemical-assay
interference. Sci. Rep., 10, 3986.

11. Mansouri,K., Grulke,C.M., Judson,R.S. and Williams,A.J. (2018)
OPERA models for predicting physicochemical properties and
environmental fate endpoints. J. Cheminform., 10, 10.

12. Tropsha,A. (2010) Best practices for QSAR model development,
validation, and exploitation. Mol. Inform., 29, 476–488.

13. Golbraikh,A., Muratov,E., Fourches,D. and Tropsha,A. (2014) Data
set modelability by QSAR. J. Chem. Inf. Model., 54, 1–4.

14. Cherkasov,A., Muratov,E.N., Fourches,D., Varnek,A., Baskin,I.I.,
Cronin,M., Dearden,J., Gramatica,P., Martin,Y.C., Todeschini,R.
et al. (2014) QSAR modeling: where have you been? Where are you
going to? J. Med. Chem., 57, 4977–5010.

15. Fourches,D., Muratov,E. and Tropsha,A. (2010) Trust, but verify: on
the importance of chemical structure curation in cheminformatics
and QSAR modeling research. J. Chem. Inf. Model., 50, 1189–1204.

16. Breiman,L. (2001) Random forest. Mach. Learn., 45, 5–32.
17. Richard,A.M. and Williams,C.R. (2002) Distributed

structure-searchable toxicity (DSSTox) public database network: a
proposal. Mutat. Res. - Fundam. Mol. Mech. Mutagen., 499, 27–52.

18. Williams,A.J., Grulke,C.M., Edwards,J., McEachran,A.D.,
Mansouri,K., Baker,N.C., Patlewicz,G., Shah,I., Wambaugh,J.F.,
Judson,R.S. et al. (2017) The comptox chemistry dashboard: a
community data resource for environmental chemistry. J.
Cheminform., 9, 61.

19. Su,B.-H., Tu,Y.-S., Lin,O.A., Harn,Y.-C., Shen,M.-Y. and Tseng,Y.J.
(2015) Rule-based classification models of molecular
autofluorescence. J. Chem. Inf. Model., 55, 434–445.

20. Baell,J.B. and Holloway,G.A. (2010) New substructure filters for
removal of pan assay interference compounds (PAINS) from
screening libraries and for their exclusion in bioassays. J. Med.
Chem., 53, 2719–2740.

https://tripod.nih.gov/tox21/assays/
https://comptox.epa.gov/dashboard
https://sandbox.ntp.niehs.nih.gov/interferences/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaa378#supplementary-data

